Биометрические системы информационной безопасности на основе Intel Perceptual Computing SDK. Биометрические системы безопасности и системы аутентификации

Жаропонижающие средства для детей назначаются педиатром. Но бывают ситуации неотложной помощи при лихорадке, когда ребенку нужно дать лекарство немедленно. Тогда родители берут на себя ответственность и применяют жаропонижающие препараты. Что разрешено давать детям грудного возраста? Чем можно сбить температуру у детей постарше? Какие лекарства самые безопасные?

Аннотация.

В статье приведены основные биометрические параметры. Рассмотрены методы идентификации, нашедшие широкое применение в России. Биометрическая идентификация способна решить задачу объединения всех существующих паролей пользователя к одному и применять его повсеместно. Процесс извлечения свойств отпечатка пальцев начинается с оценки качества изображения: вычисляется ориентация бороздок, которая в каждом пикселе отражает направление бороздки. Распознавание лиц - это самый приемлемый обществом метод биометрической идентификации. Идентификации личности по радужной оболочке глаза состоит из получения изображения, на котором локализуется радужная оболочка и составляется её код. В качестве двух основных характеристик любой биометрической системы можно использовать ошибки первого и второго рода. Идентификация на основе рисунка радужной оболочки глаза является одним из самых надёжных биометрических методов. Беcконтактный способ получения данных говорит о простоте использования и возможном внедрении в различные области.


Ключевые слова: биометрические параметры, идентификация личности, отпечатки пальцев, распознавание лиц, радужная оболочка, биометрическая идентификация, алгоритм, базы данных, биометрические методы, пароль

10.7256/2306-4196.2013.2.8300


Дата направления в редакцию:

24-05-2013

Дата рецензирования:

25-05-2013

Дата публикации:

1-4-2013

Abstract.

The article lists the main biometric parameters. The author reviews methods of identification that are used widely in Russia. Biometric identification helps to solve the problem of unification of all existing user passwords to one and apply it across the board. The process of extracting fingerprint features begins with an assessment of image quality is calculated orientation grooves which each pixel represents the direction of the grooves. Face Detection is the most acceptable method of biometric identification in society. Identification of the iris consists of image acquisition with localization of an iris and then forming a code of the iris. As the two main characteristics of any biometric system it is possible to use Type I and Type II errors. Identification based on the iris pattern of the eye is one of the most reliable biometric methods. Contactless method of obtaining data in this case suggests simplicity of use of this method in various areas.

Keywords:

Biometric identification, iris, face recognition, fingerprints, personal identification, biometrics, algorithm, database, biometric methods, password

Введение

Человек в современном обществе всё в большей степени нуждаются в обеспечении личной безопасности и безопасности производимых ими действий. Для каждого из нас необходимым атрибутом повседневной жизни становится надёжная авторизация: повсеместное применение банковских карт, сервисов электронной почты, совершение различных операций и пользование услугами - всё это требует идентификации личности. Уже сегодня мы вынуждены вводить десятки паролей, иметь при себе токен или другой идентифицирующий маркер. В такой ситуации остро встаёт вопрос: «А можно ли свести все существующие пароли к одному и применять его повсеместно, не опасаясь кражи или подмены?»

Биометрические параметры

Биометрическая идентификация способна решить данную задачу. Распознавание человека по биометрическим данным - это автоматизированный метод идентификации на основе физиологических (являются физическими характеристиками и измеряются в определённые моменты времени) и поведенческих (представляют собой последовательность действий и протекают в течение некоторого периода времени) черт. В таблице 1 перечислены основные из них.

Таблица 1

Биометрические параметры

Применяются часто

Применяются редко

Физиологические

Поведенческие

Физиологические

Поведенческие

1. Отпечатки пальцев

1. Подпись

1. Сетчатка глаза

1. Клав. почерк

2. Походка

3. Радужная оболочка

3. Форма ушей

4. Геометрия руки

5. Отражение от кожи

6. Термограмма

Подробнее остановимся на трёх, распространённых в России.

Отпечатки пальцев

Отпечатки пальцев (рис. 1 а) представляют собой мелкие бороздки на внутренней поверхности ладони и ступни человека. Судебная экспертиза основывается на предположении, что не существует двух одинаковых отпечатков пальцев, принадлежащих разным людям.

Для сравнения отпечатков эксперты используют множество деталей папиллярных узоров, имеющих следующие черты: конец бороздки, раздвоение бороздки, независимая бороздка, озеро, ответвление, перекрест и другие. Автоматические методы сравнения работают схожим образом. Процесс извлечения свойств отпечатка начинается с оценки качества изображения: вычисляется ориентация бороздок, которая в каждом пикселе отражает направление бороздки. Затем происходит сегментация бороздок и локализации деталей с последующим распознаванием.

Геометрия лица

Задача распознавания лиц идёт рука об руку с человеком с незапамятных времён. Паспорт, снабжённый фотографией, стал повсеместным и главным документом, удостоверяющим личность человека. Это самый приемлемый обществом метод биометрической идентификации. Простота фиксирования данного биометрического признака позволила составить большие базы данных: фотографии в правоохранительных органах, видеозаписи камер наблюдения, социальные сети и так далее.

Источником получения изображения могут быть: оцифровке документы; камеры наблюдения; трёхмерные изображения; снимки в инфракрасном спектре.

На полученном изображении локализуется лицо (рис. 1 б), затем применяется один из двух методов: внешний вид лица и геометрия лица. Предпочтительным является метод, основанный на анализе геометрии лица, история распознавания которого насчитывает тридцатилетнюю историю.

Радужная оболочка глаза

Радужная оболочка - цветная часть глаза между склерой и зрачком. Является, как и отпечатки пальцев фенотипической особенностью человека и развивается в течении первых месяцев беременности.

Идея идентификации личности по радужной оболочке глаза была предложена офтальмологами ещё в 1936 году. Позднее, идея нашла своё отражение в некоторых фильмах. Например, в 1984 году был снят фильм про Джеймса Бонда «Никогда не говори никогда». И лишь в 1994 году появился первый автоматизированный алгоритм распознавания радужной оболочки глаза, разработанный математиком Джоном Даугманом. Алгоритм был запатентован и до сих пор лежит в основе систем распознавания радужной оболочки.

Устройство по захвату изображения глаза, которое будет удобным для пользователя и незаметным, является одной из проблем. Ведь при этом оно должно считывать рисунок радужной оболочки не зависимо от условий освещения. Есть несколько подходов. Первый из них базируется на поиске лица и глаз, затем другая камера с увеличительным объективом получает высококачественное изображение радужной оболочки. Второй - требует, чтобы глаз человека находился внутри определённой области наблюдений одной камеры.

На полученном изображении локализуется радужная оболочка и составляется её код (рис. 1 в). Даугман использовал двумерный фильтр Габора. Дополнительно создаётся маска, где изображение зашумлено (области наложения ресниц и век), которая накладывается на исходный код радужной оболочки. Для идентификации вычисляется расстояние Хэмминга (разница в битах между двумя шаблонами радужных оболочек), которое для одинаковых радужных оболочек будет наименьшим.

Рисунок 1. Примеры биометрических параметров

Статистические характеристики

В качестве двух основных характеристик любой биометрической системы можно использовать ошибки первого и второго рода. В области биометрии наиболее устоявшиеся понятия - FAR (False Acceptance Rate) и FRR(False Rejection Rate). FAR характеризует вероятность ложного совпадения биометрических характеристик двух людей. FRR - вероятность отказа доступа человеку, имеющего допуск.

В таблице 2 приведены средние показатели для различных биометрических систем

Таблица 2

Характеристики биометрических систем

Следует отметить, что данные показатели варьируются в зависимости от используемых биометрических баз данных и применяемых алгоритмов, однако их качественное соотношение остаётся примерно одним. Анализируя эти данные, можно придти к выводу, что идентификация на основе рисунка радужной оболочки глаза является одним из самых надёжных биометрических методов. Безконтактный способ получения данных говорит о простоте использования и возможном внедрении в различные области.

Современная наука не стоит на месте. Все чаще и чаще требуется качественная защита для устройств, чтобы тот, кто случайно ими завладел, не смог в полной мере воспользоваться информацией. Кроме этого, методы охраны информации от используются не только в повседневной жизни.

Кроме ввода паролей в цифровом виде, применяются и более индивидуализированные биометрические системы защиты.

Что это такое?

Ранее такая система применялась только в ограниченных случаях, для защиты наиболее важных стратегических объектов.

Затем, после 11 сентября 2011 года, пришли к выводу, что такой и доступа может быть применен не только в этих областях, но и в других сферах.

Таким образом, приемы идентификации человека стали незаменимыми в ряду методов борьбы с мошенничеством и терроризмом, а также в таких областях, как:

Биометрические системы доступа к технологиям связи, сетевым и компьютерным базам;

Базы данных;

Контроль доступа в хранилища информации и др.

У каждого человека есть набор характеристик, которые не меняются со временем, или такие, которые могут модифицироваться, но при этом принадлежать только конкретному лицу. В связи с этим можно выделить следующие параметры биометрических систем, которые используются в этих технологиях:

Статические - отпечатки пальцев, фотографирование ушных раковин, сканирование сетчатки глаза и другие.

Технологии биометрики в перспективе заменят обычные методы аутентификации человека по паспорту, так как встроенные чипы, карты и тому подобные новшества научных технологий будут внедряться не только в данный документ, но и в другие.

Небольшое отступление по поводу способов распознавания личности:

- Идентификация - один ко многим; образец сравнивается со всеми имеющимися по определенным параметрам.

- Аутентификация - один к одному; образец сравнивается с ранее полученным материалом. При этом лицо может быть известно, полученные данные человека сравниваются с имеющимся в базе образцом параметра этого лица;

Как работают биометрические системы защиты

Для того чтобы создать базу под определенного человека, необходимо считать его биологические индивидуальные параметры специальным устройством.

Система запоминает полученный образец биометрической характеристики (процесс записи). При этом, возможно, потребуется сделать несколько образцов для составления более точного контрольного значения параметра. Информация, которая получена системой, преобразовывается в математический код.

Помимо создания образца, система может запросить произвести дополнительные действия для того, чтобы объединить личный идентификатор (ПИН-код или смарт-карту) и биометрический образец. В дальнейшем, когда происходит сканирование на предмет соответствия, система сравнивает полученные данные, сравнивая математический код с уже записанными. Если они совпадают, что это значит, что аутентификация прошла успешно.

Возможные ошибки

Система может выдавать ошибки, в отличии от распознавания по паролям или электронным ключам. В этом случае различают следующие виды выдачи неверной информации:

Ошибка 1 рода: коэффициент ложного доступа (FAR) - одно лицо может быть принято за другое;

Ошибка 2 рода: коэффициент ложного отказа в доступе (FRR) - человек не распознается в системе.

Для того чтобы исключить, к примеру, ошибки данного уровня, необходимо пересечение показателей FAR и FRR. Однако это невозможно, так как для этого нужно было бы проводить идентификацию человека по ДНК.

Отпечатки пальцев

На данный момент наиболее известен метод биометрики. При получении паспорта современные граждане России в обязательном порядке проходят процедуру снятия отпечатков пальцев для внесения их в личную карточку.

Данный метод основан на неповторимости пальцев и используется уже достаточно длительное время, начиная с криминалистики (дактилоскопия). Сканируя пальцы, система переводит образец в своеобразный код, который затем сравнивается с существующим идентификатором.

Как правило, алгоритмы обработки информации используют индивидуальное расположение определенных точек, которые содержат отпечатки пальцев - разветвления, окончание линии узора и т. д. Время, которое занимает перевод изображения в код и выдача результата, обычно составляет около 1 секунды.

Оборудование, в том числе и программное обеспечение для него, производятся на данный момент в комплексе и стоят относительно недорого.

Возникновение ошибок при сканировании пальцев руки (или обеих рук) возникают довольно часто в том случае, если:

Присутствует несвойственная влажность или сухость пальцев.

Руки обработаны химическими элементами, которые затрудняют идентификацию.

Есть микротрещины или царапины.

Имеется большой и непрерывный поток информации. К примеру, это возможно на предприятии, где доступ к рабочему месту осуществляется при помощи дактилоскопа. Так как поток людей значительный, система может давать сбой.

Наиболее известные компании, которые занимаются системами распознавания отпечатков пальцев: Bayometric Inc., SecuGen. В России над этим работают: "Сонда", BioLink, "СмартЛок" и др.

Глазная радужная оболочка

Рисунок оболочки формируется на 36 неделе внутриутробного развития, устанавливается к двум месяцам и не меняется на протяжении жизни. Биометрические системы идентификации по радужной оболочке являются не только наиболее точными среди других в этом ряду, но и одними из самых дорогих.

Преимущество способа состоит в том, что сканирование, то есть захват изображения, может происходить как на расстоянии 10 см, так и на 10-метровом удалении.

При фиксации изображения данные о расположении определенных точек на радужке глаза передаются в вычислитель, который затем выдает информацию о возможности допуска. Скорость обработки сведений о радужке человека составляет около 500 мс.

На данный момент данная система распознавания на биометрическом рынке занимает не более 9% от общего числа таких способов идентификации. В то же время доля рынка, которую занимают технологии по отпечаткам пальцев, составляет более 50%.

Сканеры, позволяющие захватывать и обрабатывать радужку глаза, имеют довольно сложную конструкцию и ПО, а поэтому на такие устройства установлена высокая цена. Кроме этого, монополистом в производстве систем распознавания человека изначально являлась компания Iridian. Затем на рынок стали заходить и другие крупные компании, которые уже занимались производством компонентов различных устройств.

Таким образом, на данный момент в России существуют следующие компании, которые формируют системы распознавания человека по радужке глаза: AOptix, SRI International. Однако данные фирмы не предоставляют показателей по количеству ошибок 1 и 2 рода, поэтому не факт, что что система не защищена от подделок.

Геометрия лица

Существуют биометрические системы безопасности, связанные с распознаванием по лицу в 2D и 3D-режимах. Вообще считается, что черты лица каждого человека уникальны и не меняются в течение жизни. Неизменными остаются такие характеристики, как расстояния между определенными точками, форма и т. д.

2D-режим является статическим способом идентификации. При фиксации изображения необходимо, что человек не двигался. Имеют также значение фон, наличие усов, бороды, яркий свет и другие факторы, которые мешают системе распознать лицо. Это означает, что при любых неточностях выданный результат будет неверным.

На данный момент этот метод не особо популярен из-за своей низкой точности и применяется только в мультимодальной (перекрестной) биометрии, представляющая собой совокупность способов распознавания человека по лицу и голосу одновременно. Биометрические системы защиты могут включать в себя и другие модули - по ДНК, отпечаткам пальцев и другие. Кроме этого, перекрестный способ не требует контакта с человеком, которого необходимо идентифицировать, что позволяет распознавать людей по фотографии и голосу, записанных на технические устройства.

3D-метод имеет совершенно другие входящие параметры, поэтому нельзя его сравнивать с 2D-технологией. При записывании образа используется лицо в динамике. Система, фиксируя каждое изображение, создает 3D-модель, с которой затем сравниваются полученные данные.

В этом случае используется специальная сетка, которая проецируется на лицо человека. Биометрические системы защиты, делая несколько кадров в секунду, обрабатывают изображение входящим в них программным обеспечением. На первом этапе создания образа ПО отбрасывает неподходящие изображения, где плохо видно лицо или присутствуют вторичные предметы.

Затем программа определяет и игнорирует лишние предметы (очки, прическа и др.). Антропометрические особенности лица выделяются и запоминаются, генерируя уникальный код, который заносится в специальное хранилище данных. Время захвата изображения составляет около 2 секунд.

Однако, несмотря на преимущество метода 3D перед 2D-способом, любые существенные помехи на лице или изменение мимики ухудшают статистическую надежность данной технологии.

На сегодняшний день биометрические технологии распознавания по лицу применяются наряду с наиболее известными вышеописанными методами, составляя приблизительно 20% всего рынка биометрических технологий.

Компании, которые занимаются разработкой и внедрением технологии идентификации по лицу: Geometrix, Inc., Bioscrypt, Cognitec Systems GmbH. В России над этим вопросом работают следующие фирмы: Artec Group, Vocord (2D-метод) и другие, менее крупные производители.

Вены ладони

Лет 10-15 назад пришла новая технология биометрической идентификации - распознавание по венам руки. Это стало возможным благодаря тому, что гемоглобин, находящийся в крови, интенсивно поглощает инфракрасное излучение.

Специальная камера ИК фотографирует ладонь, в результате чего на снимке появляется сетка вен. Данное изображение обрабатывается ПО, и выдается результат.

Расположение вен на руке сравнимо с особенностями радужки глаза - их линии и структура не меняются со временем. Достоверность данного метода тоже можно соотнести с результатами, полученными при идентификации при помощи радужной оболочки.

Контактировать для захвата изображения считывающим устройством не нужно, однако использование этого настоящего метода требует соблюдения некоторых условий, при которых результат будет наиболее точным: невозможно получить его, если, к примеру, сфотографировать руку на улице. Также во время сканирования нельзя засвечивать камеру. Конечный результат будет неточным, если имеются возрастные заболевания.

Распространение метода на рынке составляет всего около 5%, однако к нему проявляется большой интерес со стороны крупных компаний, которые уже разрабатывали биометрические технологии: TDSi, Veid Pte. Ltd., Hitachi VeinID.

Сетчатка глаза

Сканирование рисунка капилляров на поверхности сетчатки считается самым достоверным методом идентификации. Он сочетает в себе наилучшие характеристики биометрических технологий распознавания человека по радужке глаз и венам руки.

Единственный момент, когда метод может дать неточные результаты - катаракта. В основном же сетчатка имеет неизменяемую структуру на протяжении всей жизни.

Минус этой системы заключается в том, что сканирование сетчатки глаза производится тогда, когда человек не двигается. Сложная по своему применению технология предусматривает длительное время обработки результатов.

Ввиду высокой стоимости биометрическая система не имеет достаточного распространения, однако дает самые точные результаты из всех предложенных на рынке методов сканирования человеческих особенностей.

Руки

Ранее популярный способ идентификации по геометрии рук становится менее применяемым, так как дает наиболее низкие результаты по сравнению с другими методиками. При сканировании фотографируются пальцы, определяются их длина, соотношение между узлами и другие индивидуальные параметры.

Форма ушей

Специалисты говорят о том, что все существующие методы идентификации не настолько точны, как распознавание человека по Однако есть способ определения личности по ДНК, но в этом случае происходит тесный контакт с людьми, поэтому его считают неэтичным.

Исследователь Марк Никсон из Великобритании заявляет, что методы данного уровня - биометрические системы нового поколения, они дают самые точные результаты. В отличии от сетчатки, радужки или пальцев, на которых могут с большой долей вероятности появиться посторонние параметры, затрудняющие идентификацию, на ушах такого не бывает. Сформированное в детстве, ухо только растет, не изменяясь по своим основным точкам.

Метод идентификации человека по органу слуха изобретатель назвал «лучевое преобразование изображения». Данная технология предусматривает захват изображения лучами разного цвета, что затем переводится в математический код.

Однако, по словам ученого, у его метода существуют и отрицательные стороны. К примеру, получению четкого изображения могут помешать волосы, которые закрывают уши, ошибочно выбранный ракурс и другие неточности.

Технология сканирования уха не заменит собой такой известный и привычный способ идентификации, как отпечатки пальцев, однако может использоваться наряду с ним.

Полагают, что это увеличит надежность распознавания людей. Особенно важной является совокупность различных методов (мультимодальная) в поимке преступников, считает ученый. В результате опытов и исследований надеются создать ПО, которое будет использоваться в суде для однозначной идентификации виновных лиц по изображению.

Голос человека

Идентификация личности может быть проведена как на месте, так и удаленным способом, при помощи технологии распознавания голоса.

При разговоре, к примеру, по телефону, система сравнивает данный параметр с имеющимися в базе и находит похожие образцы в процентном отношении. Полное совпадение означает, что личность установлена, то есть произошла идентификация по голосу.

Для того чтобы получить доступ к чему-либо традиционным способом, необходимо ответить на определенные вопросы, обеспечивающие безопасность. Это цифровой код, девичья фамилия матери и другие текстовые пароли.

Современные исследование в данной области показывают, что этой информацией довольно легко завладеть, поэтому могут применяться такие способы идентификации, как голосовая биометрия. При этом проверке подлежит не знание кодов, а личность человека.

Для этого клиенту нужно произнести какую-либо кодовую фразу или начать разговаривать. Система распознает голос звонящего и проверяет его принадлежность этому человеку - является ли он тем, за кого себя выдает.

Биометрические системы защиты информации данного типа не требуют дорогостоящего оборудования, в этом заключается их преимущество. Кроме этого, для проведения сканирования голоса системой не нужно иметь специальных знаний, так как устройство самостоятельно выдает результат по типу "истина - ложь".

По почерку

Идентификация человека по способу написания букв имеет место практически в любой сфере жизни, где необходимо ставить подпись. Это происходит, к примеру, в банке, когда специалист сличает образец, сформированный при открытии счета, с подписями, проставленными при очередном посещении.

Точность этого способа невысокая, так как идентификация происходит не с помощью математического кода, как в предыдущих, а простым сравнением. Здесь высок уровень субъективного восприятия. Кроме этого, почерк с возрастом сильно меняется, что зачастую затрудняет распознавание.

Лучше в этом случае использовать автоматические системы, которые позволят определить не только видимые совпадения, но и другие отличительные черты написания слов, такие как наклон, расстояние между точками и другие характерные особенности.

Михайлов Алексей Алексеевич
начальник сектора отдела ФКУ НИЦ «Охрана» МВД России, подполковник полиции,

Колосков Алексей Анатольевич
старший научный сотрудник ФКУ НИЦ «Охрана» МВД России, подполковник,

Дронов Юрий Иванович
старший научный сотрудник ФКУ НИЦ «Охрана» МВД России

ВСТУПЛЕНИЕ

В настоящее время наблюдается бурное развитие биометрических систем контроля и допуска (далее биометрии) как за рубежом, так и в России. Действительно, использование биометрии для целей охраны чрезвычайно привлекательно. Любой ключ, таблетку - TouchMemory, Proxy-карту или другой материальный идентификатор можно украсть, сделать дубликат и таким образом получить доступ к объекту охраны.

Цифровой ПИН-код (вводится человеком с помощью клавиатуры) можно зафиксировать с помощью банальной видеокамеры, и потом есть возможность шантажа человека или угрозы физического воздействия на него с целью получения значения кода. Редко кто из читателей, на собственном опыте или на опыте своих знакомых, не сталкивался с таким способом мошенничества. Появился даже термин, обозначающий данный способ изъятия честно заработанных денег у граждан, - скимминг (от англ. skim - снимать сливки).

Биометрический идентификатор невозможно украсть или получить путем шантажа, что делает в перспективе его очень привлекательным для целей охраны и доступа. Правда, можно попытаться создать имитатор биологического признака человека, но тут должна проявить себя в полной мере биометрическая система и отвергнуть подделку.

Вопрос «обхода» биометрических систем - это большая и отдельная тема, и в рамках этой статьи мы не будем ее затрагивать, да и создать имитатор биологического признака человека - непростая задача.

Особенно отрадно отметить активное развитие данного направления охранной техники в России. Например, «Русское общество содействия развитию биометрических технологий, систем и коммуникаций» существует с 2002 года.

Существует и технический комитет по стандартизации ТК 098 «Биометрия и биомониторинг», который работает достаточно плодотворно (выпущено более 30 ГОСТ, см.: http://www.rusbiometrics.com/), но нас, как пользователей, больше всего интересует ГОСТ Р ИСО/МЭК19795-1-2007 «Автоматическая идентификация. Идентификация биометрическая. Эксплуатационные испытания и протоколы испытаний в биометрии. Часть 1. Принципы и структура».

ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ

Для того чтобы понимать, о чем пишут в нормативных документах, необходимо определиться в терминах и определениях. Чаще всего по своему физическому принципу пишут об одном и том же, но называют совершенно иначе. Итак, о наиболее значимых параметрах в биометрии:

VERIFICATION (верификация) - процесс, при котором происходит сравнение представленного пользователем образца с шаблоном, зарегистрированным в базе данных (ГОСТ Р ИСО/МЭК19795-1-2007). Здесь принципиальным является, что один образец сравнивается с одним шаблоном (сравнение один к одному с биометрическим шаблоном), поэтому любая биометрическая система будет иметь лучшие показатели для верификации по сравнению с идентификацией.

IDENTIFICATION (идентификация) - процесс, при котором осуществляется поиск в регистрационной базе данных и предоставляется список кандидатов, содержащих от нуля до одного или более идентификаторов (ГОСТ Р ИСО/МЭК19795-1-2007). Здесь принципиальным является, что один образец сравнивается со многими шаблонами (сравнение один ко многим), и ошибка системы многократно возрастает. Идентификация становится наиболее критичным параметром для систем биометрии, основанной на распознавании характерных черт лица человека. Для машины лица людей практически идентичны.

FAR (False Acceptance Rate) - вероятность несанкционированного допуска (ошибка первого рода), выраженное в процентах число допусков системой неавторизованных лиц (имеется в виду верификация). Вероятностные параметры выражаются или в абсолютных величинах (10-5), для параметра FAR это означает, что 1 человек из 100 тыс. будет несанкционированно допущен, в процентах данное значение будет (0,001%).

ВЛД - вероятность ложного допуска (FAR), (ГОСТ Р ИСО/МЭК19795-1-2007).

FRR (False Rejection Rate) - вероятность ложного задержания (ошибка второго рода), выраженное в процентах число отказов в допуске системой авторизованных лиц (имеется в виду верификация).

ВЛНД - вероятность ложного недопуска (FRR), (ГОСТ Р ИСО/МЭК19795-1-2007).

FMR (False Match Rate) - вероятность ложного совпадения параметров. Где-то мы это уже читали, см. FAR, но в данном случае один образец сравнивается со многими шаблонами, заложенными в базу данных, т.е. происходит идентификация.

ВЛС - вероятность ложного совпадения (FMR), (ГОСТ Р ИСО/МЭК19795-1-2007).

FNMR (False Non-Match Rate) - вероятность ложного несовпадения параметров, в данном случае один образец сравнивается со многими шаблонами, заложенными в базу данных, т.е. происходит идентификация.

ВЛНС - вероятность ложного несовпадения (FNMR), (ГОСТ Р ИСО/МЭК19795-1-2007).

Параметры (как и остальные перечисленные выше) взаимосвязаны (рис. 1). Меняя порог FAR и FRR - «чувствительности» биометрической системы, мы одновременно изменяем их, выбирая требуемое соотношение. Действительно, можно так настроить биометрическую систему, что она с большой долей вероятности будет пропускать зарегистрированных пользователей, но и с достаточной долей вероятности будет пропускать и незарегистрированных пользователей. Поэтому данные параметры должны быть указаны одновременно для биометрической системы.

Рис. 1. Графики FAR и FRR

Если указывается только один параметр, то вас, как пользователя, это должно насторожить, поскольку таким образом очень легко завысить параметры в сравнении с конкурентом. Утрируя, можно сказать, что самый низкий коэффициент FAR будет иметь неработающая система, уж точно она никого несанкционированно не допустит.

Более или менее объективным параметром биометрической системы является коэффициент EER.

Коэффициент EER (равный уровень ошибок) - это коэффициент, при котором обе ошибки (ошибка приема и ошибка отклонения) эквивалентны. Чем ниже коэффициент EER, тем выше точность биометрической системы.

Для параметров FMR и FNMR строят аналогичный график (рис. 2). Обратите внимание, что этот график всегда должен иметь привязку к объему базы данных (обычно числа выбирают с шагом 100, 1000, 10000 шаблонов и т.д.).

Рис. 2. Графики FMR и FNMR

КОО - кривая компромиссного определения ошибки (англ. DET - detection error trade-off curve; DET curve). Модифицированная кривая рабочей характеристики, по осям которой отложены вероятности ошибки (ложноположительная - по оси X и ложноотрицательная - по оси У), (ГОСТ Р ИСО/МЭК19795-1-2007).

Кривую КОО (DET) используют для построения графика вероятностей ошибок сравнения (ВЛНС (FNMR) в зависимости от ВЛС (FMR)), вероятностей ошибок принятия решения (ВЛНД (FRR) в зависимости от ВЛД (FAR)) (рис. 3-4) и вероятностей идентификации на открытом множестве (ВЛОИ в зависимости от ВЛПИ), (ГОСТ Р ИСО/МЭК19795-1-2007).

Рис. 3. График DET

Рис. 4. Пример кривых КОО (ГОСТ Р ИСО/МЭК19795-1-2007)

Графики, отображающие качество работы биометрических систем, достаточно многочисленны, иногда создается впечатление, что их назначение - запутать доверчивого пользователя. Существуют еще РХ -кривая рабочей характеристики (англ. ROC - receiver operating characteristic curve) (рис. 5-6), и, конечно, вы понимаете, что это далеко не последние кривые и зависимости, которые существуют в биометрии, но для ясности вопроса не будем на них останавливаться.

Рис. 5. Пример набора кривых РХ (ГОСТ Р ИСО/МЭК19795-1-2007)

Рис. 6. Пример ROC-кривой

Кривые РХ (ROC) не зависят от порога, что позволяет проводить сравнение эксплуатационных характеристик различных биометрических систем, используемых в аналогичных условиях, или одной биометрической системы, используемой в различных условиях окружающей среды.

Кривые РХ (ROC) используют для изображения эксплуатационных характеристик алгоритма сравнения (1 - ВЛНС в зависимости от ВЛС), (1 - FNMR в зависимости от FMR), эксплуатационных характеристик биометрических систем верификации (1 - ВЛНД в зависимости от ВЛД), (1 - FRR в зависимости от FAR), а также эксплуатационных характеристик биометрических систем идентификации на открытом множестве (вероятность идентификации в зависимости от ВЛПИ).

Примечание: ВЛПИ - вероятность ложноположительной идентификации (англ. FPIR - false-positive identification-error rate), т.е. доля транзакций идентификации незарегистрированных в системе пользователей, в результате которых возвращается идентификатор (ГОСТ Р ИСО/МЭК19795-1-2007).

1) Параметры FAR (ВЛД), FRR (ВЛНД) и FMR (ВЛС) FNMR (ВЛРС) имеет смысл рассматривать только в совокупности.

2) Чем ниже коэффициент EER, тем выше точность биометрической системы.

3) Хорошим тоном для биометрической системы является наличие графиков DET (КОО) и ROC (РХ).

ГРАНИЦЫ ПАРАМЕТРОВ FAR И FRR БИОМЕТРИЧЕСКИХ СИСТЕМ

Теперь давайте прикинем, какие параметры FAR и FRR должны быть у биометрических систем. Обратимся за аналогией к требованиям для цифрового кодонаборни-ка. Согласно ГОСТ число значимых десятичных цифр должно быть не менее 6, т.е. диапазон 0-999999, или 107 вариантов кода. Тогда вероятность FAR - 10-7, а вероятность FRR определяется работоспособностью системы, т.е. стремится к нулю.

В банкоматах используется 4-разрядный десятичный код (что не соответствует ГОСТ), и тогда FAR будет составлять 10-5. Возьмем FAR= 10-5 за определяющий параметр. Какое значение можно взять за приемлемое для FRR? Это зависит от задач биометрической системы, но нижняя граница должна находиться в диапазоне 10-2, т.е. вас, как легального пользователя, система не допустит только один раз из ста попыток. Для систем с большой пропускной способностью, например, проходная завода, это значение должно быть 10-3, иначе не понятно назначение биометрии, если мы не избавились от «человеческого» фактора.

Многие биометрические системы заявляют похожие и даже на порядок лучшие характеристики, но поскольку наши величины являются вероятностными, то необходимо указывать доверительный интервал этой величины. С этого момента производители биометрии предпочитают не вдаваться в подробности и не указывать данный параметр.

Если методика расчета, схема эксперимента и доверительный интервал не указаны, то по умолчанию подразумевается действие правила «тридцати», которое выдвинул J. F. Poter в работе «On the 30 error criterion)) (1997).

Об этом же говорит и ГОСТ Р ИСО/ МЭК19795-1-2007. В правиле «тридцати» утверждается, что для того, чтобы с доверительной вероятностью 90% истинная вероятность ошибки находилась в диапазоне ±30% от установленной вероятности ошибки, должно быть зарегистрировано не менее 30 ошибок. Например, если получены 30 ошибок ложного несоответствия в 3000 независимых испытаниях, можно с доверительной вероятностью 90% утверждать, что истинная вероятность ошибки находится в диапазоне от 0,7% до 1,3%. Правило следует непосредственно из биноминального распределения при независимых испытаниях и может применяться с учетом ожидаемых эксплуатационных характеристик для выполнения оценки.

После этого следует логичный вывод: чтобы получить величину ложного доступа в 10-5, нужно провести 3х106 опытов, что практически невозможно осуществить физически при реальном тестировании биометрической системы. Вот тут нас начинают мучить смутные сомнения.

Остается надеяться, что такое тестирование было проведено в лаборатории путем сравнения шаблонов вводимых биометрических признаков с шаблонами базы данных системы. Лабораторные испытания позволяют достаточно корректно оценить надежность заложенных алгоритмов обработки данных, но не реальную работу системы. Лабораторные испытания исключают такие воздействия на биометрическую систему, как электромагнитные наводки (актуально для всех систем биометрии), за-пыление или загрязнение контактных или дистанционных устройств считывания биометрического параметра, реальное поведение человека при взаимодействии с устройствами биометрии, недостаток или избыток освещения, периодическое изменение освещенности и т.д., да мало ли, что еще может повлиять на такую сложную систему, как система биометрии. Если бы человек мог заранее предугадать все негативно-действующие факторы, то можно было бы и не проводить натурные испытания.

Из опыта работы с другими охранными системами можем утверждать, что даже эксплуатация охранной системы в течение 45 суток не выявляет большинство скрытых проблем, и только опытная эксплуатация в течение 1-1,5 лет позволяет их устранить. У разработчиков существует даже термин - «детские болезни». Любая система должна ими переболеть.

Таким образом, кроме лабораторных испытаний необходимо проводить и натурные испытания, естественно, что оценки доверительных интервалов при меньшем количестве опытов должны оцениваться по другим методикам.

Обратимся к учебнику Е.С. Вентцель «Теория вероятностей» (М.: «Наука», 1969. С. 334), который утверждает, если вероятность Р очень велика или очень мала (что несомненно соответствует реальным результатам измерения вероятностей для биометрических систем), доверительный интервал строят, исходя не из приближенного, а из точного закона распределения частоты. Нетрудно убедиться, что это есть биномиальное распределение. Действительно, число появлений события А в n-опытах распределено по биномиальному закону: вероятность того, что событие А появится ровно m раз, равна

а частота р* есть не что иное, как число появлений события, деленное на число опытов.

В данном труде приводится графическая зависимость доверительного интервала от количества проведенных опытов (рис. 7) для доверительной вероятности b = 0,9.

Рис. 7. Графическая зависимость доверительного интервала от количества проведенных опытов

Рассмотрим пример. Мы провели 100 натурных опытов, из которых получили вероятность события равную 0,7. Тогда по оси абсцисс откладываем значение частоты р* = 0,7, проводим через эту точку прямую, параллельную оси ординат, и отмечаем точки пересечения прямой с парой кривых, соответствующих данному числу опытов n = 100; проекции этих точек на ось ординат и дадут границы р1 = 0,63, р2 = 0,77 доверительного интервала.

Для тех случаев, когда точность построения графического метода недостаточна, можно воспользоваться достаточно детальными табличными зависимостями (рис. 8) доверительного интервала, приведенными в труде И.В. Дунина-Барковского и Н.В. Смирнова «Теория вероятностей и математическая статистика в технике» (М.: Государственное издательство технико-теоретической литературы, 1955). В данной таблице х-числитель, n-знаменатель частости. Вероятности умножены на 1000.

Рассмотрим пример. Мы провели 204 натурных опытов, из которых событие произошло 4 раза. Вероятность Р = 4/204 = 0,0196, границы доверительного интервала р1 = 0,049, р2= 0,005.

Теоретически подразумевается, что заявленные в документации параметры должны быть подтверждены сертификатами. Однако в России почти во всех областях жизни действует институт добровольной сертификации, поэтому сертифицируют на те требования, на которые хотят или могут получать сертификат.

Берем первый попавшийся сертификат на биометрическую систему, и видим 6 наименований ГОСТ, из которых ни один не содержит перечисленные выше параметры. Слава богу, что они хоть относятся к охранной технике и нормам безопасности. Это еще не самый худший вариант, приходилось встречать приемники и передатчики радиосистем передачи данных (РСПИ), сертифицированные как электрические машины.

Рис. 8. Фрагмент табличной зависимости доверительного интервала от количества проведенных опытов для доверительной вероятности b = 0,95

САМОЕ ГЛАВНОЕ ИЗ ПЕРЕЧИСЛЕННОГО

1) Параметры FAR (ВЛД) должны быть не ниже 10-5, а FRR (ВЛНД) должны находиться в диапазоне 10"2-10"3.

2) Не стоит безоговорочно доверять указанным в документации вероятностным параметрам, их можно воспринимать только как ориентир.

3) Кроме лабораторных испытаний необходимо проводить и натурные испытания биометрических систем.

4) Необходимо попытаться получить от разработчика, производителя, продавца как можно больше информации о реальных биометрических параметрах системы и методике их получения.

5) Не ленитесь расшифровывать, на какие ГОСТ(ы) и пункты ГОСТ(ов) сертифицирована биометрическая система.

В продолжение начатой темы о реальных системах биометрической идентификации предлагаем поговорить в статье «Основные биометрические системы».

ЛИТЕРАТУРА

  1. http://www.1zagran.ru
  2. http://fingerprint.com.ua/
  3. http://habrahabr.ru/post/174397/
  4. http://sonda.ru/
  5. http://eyelock.com/index.php/ products/hbox
  6. http://www.bmk.spb.ru/
  7. http://www.avtelcom.ru/
  8. http://www.nec.com/en/global/ solutions/security/products/ hybrid_finger.html
  9. http://www.ria-stk.ru/mi «Мир измерений» 3/2014
  10. http://www.biometria.sk/ru/ principles-of-biometrics.html
  11. http://www.biometrics.ru
  12. http://www.guardinfo.ru/«Система физической защиты (СФЗ) ядерных материалов и ядерно-опасных объектов»
  13. http://cbsrus.ru/
  14. http: www.speechpro.ru
  15. Poter J F. On the 30 error criterion. 1997.
  16. ГОСТ Р ИСО/МЭК19795-1-2007. Автоматическая идентификация. Идентификация биометрическая. Эксплуатационные испытания и протоколы испытаний в биометрии. Часть 1. Принципы и структура.
  17. Болл Р.М., Коннел Дж. Х., Ратха Н.К., Сеньор Э.У. Руководство по биометрии. М.: ЗАО «РИЦ Техносфера», 2006.
  18. Симончик К.К., Белевитин Д.О., Матвеев Ю.Н., Дырмовский Д.В. Доступ к интернет-банкингу на основе бимодальной биометрии // Мир измерений. 2014. № 3.
  19. 19. Дунин-Барковский И.В., Смирнов Н.В. Теория вероятностей и математическая статистика в технике. М.: Государственное издательство технико-теоретической литературы, 1955.

ZlodeiBaal 11 августа 2011 в 21:54

Современные биометрические методы идентификации

  • Информационная безопасность

В последнее время на Хабре появляется множество статей, посвящённых Гугловским системам идентификации по лицам. Если честно, то от многих из них так и несёт журналистикой и мягко говоря некомпетентностью. И захотелось мне написать хорошую статью по биометрии, оно же мне не в первой! Пара неплохих статей по биометрии на Хабре есть - но они достаточно короткие и неполные. Тут я попробую вкратце обрисовать общие принципы биометрической идентификации и современные достижения человечества в этом вопросе. В том числе и в идентификации по лицам.

У статьи есть , которое, по-сути, является её приквэлом.

В качестве основы для статьи будет использована совместная с коллегой публикация в журнале (БДИ, 2009), переработанная под современные реалии. Коллеги пока Хабре нет, но публикацию переработанной статьи тут он поддержал. На момент публикации статья являлась кратким обзором современного рынка биометрических технологий, который мы проводили для себя перед тем как выдвинуть свой продукт. Оценочные суждения о применимости, выдвинутые во второй части статьи основаны на мнениях людей, использовавших и внедрявших продукты, а так же на мнениях людей, занимающихся производством биометрических систем в России и Европе.

Общая информация

Начнём с азов. В 95% случаев биометрия по своей сути - это математическая статистика. А матстат это точная наука, алгоритмы из которой используются везде: и в радарах и в байесовских системах. В качестве двух основных характеристик любой биометрической системы можно принять ошибки первого и второго рода). В теории радиолокации их обычно называют «ложная тревога» или «пропуск цели», а в биометрии наиболее устоявшиеся понятия - FAR (False Acceptance Rate) и FRR(False Rejection Rate). Первое число характеризует вероятность ложного совпадения биометрических характеристик двух людей. Второе – вероятность отказа доступа человеку, имеющего допуск. Система тем лучше, чем меньше значение FRR при одинаковых значениях FAR. Иногда используется и сравнительная характеристика EER, определяющая точку в которой графики FRR и FAR пересекаются. Но она далеко не всегда репрезентативна. Подробнее можно посмотреть, например, .
Можно отметить следующее: если в характеристиках системы не даны FAR и FRR по открытым биометрическим базам - то что бы производители не заявляли о её характеристиках, эта система скорее всего недееспособна или сильно слабее конкурентов .
Но не только FAR и FRR определяют качество биометрической системы. Если бы это было только так, то лидирующей технологией было бы распознавание людей по ДНК, для которой FAR и FRR стремятся к нулю. Но ведь очевидно, что эта технология не применима на сегодняшнем этапе развития человечества! Нами было выработано несколько эмпирических характеристик, позволяющих оценить качество системы. «Устойчивость к подделке» – это эмпирическая характеристика, обобщающая то, насколько легко обмануть биометрический идентификатор. «Устойчивость к окружающей среде» – характеристика, эмпирически оценивающая устойчивость работы системы при различных внешних условиях, таких как изменение освещения или температуры помещения. «Простота использования» показывает насколько сложно воспользоваться биометрическим сканером, возможна ли идентификация «на ходу». Важной характеристикой является «Скорость работы», и «Стоимость системы». Не стоит забывать и то, что биометрическая характеристика человека может изменяться со временем, так что если она неустойчива– это существенный минус.
Обилие биометрических методов поражает. Основными методами, использующими статические биометрические характеристики человека, являются идентификация по папиллярному рисунку на пальцах, радужной оболочке, геометрии лица, сетчатке глаза, рисунку вен руки, геометрии рук. Также существует семейство методов, использующих динамические характеристики: идентификация по голосу, динамике рукописного подчерка, сердечному ритму, походке. Ниже представлено распределение биометрического рынка пару лет назад. В каждом втором источнике эти данные колеблются на 15-20 процентов, так что это всего лишь оценочное представление. Так же тут под понятием «геометрия руки» скрываются два разных метода о которых будет рассказано ниже.


В статье мы будем рассматривать только те характеристики, которые применимы в системах контроля и управления доступом (СКУД) или в близких им задачах. В силу своего превосходства это в первую очередь именно статические характеристики. Из динамических характеристик на сегодняшний момент только распознавание по голосу имеет хоть какую-то статистическую значимость(сравнимую с худьшими статическими алгоритмами FAR~0.1%, FRR~6%), но лишь в идеальных условиях.
Чтобы ощутить вероятности FAR и FRR, можно оценить, как часто будут возникать ложные совпадения, если установить систему идентификации на проходной организации с численностью персонала N человек. Вероятность ложного совпадения полученного сканером отпечатка пальца для базы данных из N отпечатков равна FAR∙N. И каждый день через пункт контроля доступа проходит тоже порядка N человек. Тогда вероятность ошибки за рабочий день FAR∙(N∙N). Конечно, в зависимости от целей системы идентификации вероятность ошибки за единицу времени может сильно варьироваться, но если принять допустимым одну ошибку в течение рабочего дня, то:
(1)
Тогда получим, что стабильная работа системы идентификации при FAR=0.1% =0.001 возможна при численности персонала N≈30.

Биометрические сканеры

На сегодняшний день понятие «биометрический алгоритм» и «биометрический сканер» не обязательно взаимосвязаны. Компания может выпускать эти элементы по одиночке, а может совместно. Наибольшая дифференциация производителей сканеров и производителей софта достигнута на рынке биометрии папиллярного узора пальцев. Наименьшая на рынке сканеров 3D лица. По сути уровень дифференциации во многом отображает развитость и насыщенность рынка. Чем больше выбора - тем более тематика отработана и доведена до совершенства. Различные сканеры имеют различный набор способностей. В основном это набор тестов для проверки подделан объект биометрии или нет. Для сканеров пальцев это может быть проверка рельефности или проверка температуры, для сканеров глаза это может быть проверка аккомодации зрачка, для сканеров лица - движение лица.
Сканеры очень сильно влияют на полученную статистику FAR и FRR. В некоторых случаях эти цифры могут изменяться в десятки раз, особенно в реальных условиях. Обычно характеристики алгоритма даются для некой «идеальной» базы, или просто для хорошо подходящей, где выброшены нерезкие и смазанные кадры. Лишь немногие алгоритмы честно указывают и базу и полную выдачу FAR/FRR по ней.

А теперь поподробнее про каждую из технологий

Отпечатки пальцев


Дактилоскопия (распознавание отпечатков пальцев) - наиболее разработанный на сегодняшний день биометрический метод идентификации личности. Катализатором развития метода послужило его широкое использование в криминалистике 20 века.
Каждый человек имеет уникальный папиллярный узор отпечатков пальцев, благодаря чему и возможна идентификация. Обычно алгоритмы используют характерные точки на отпечатках пальцев: окончание линии узора, разветвлении линии, одиночные точки. Дополнительно привлекается информация о морфологической структуре отпечатка пальца: относительное положение замкнутых линий папиллярного узора, «арочных» и спиральных линий. Особенности папиллярного узора преобразовываются в уникальный код, который сохраняет информативность изображения отпечатка. И именно «коды отпечатков пальцев» хранятся в базе данных, используемой для поиска и сравнения. Время перевода изображения отпечатка пальца в код и его идентификация обычно не превышает 1с, в зависимости от размера базы. Время, затраченное на поднесение руки – не учитывается.
В качестве источника данных по FAR и FRR использовались статистические данные VeriFinger SDK, полученные при помощи сканера отпечатков пальцев DP U.are.U. За последние 5-10 лет характеристики распознавания по пальцу не сильно шагнули вперёд, так что приведённые цифры неплохо показывают среднее значение современных алгоритмов. Сам алгоритм VeriFinger несколько лет выигрывал международное соревнование «International Fingerprint Verification Competition», где соревновались алгоритмы распознавания по пальцу.

Характерное значение FAR для метода распознавания отпечатков пальцев – 0.001%.
Из формулы (1) получим, что стабильная работа системы идентификации при FAR=0.001% возможна при численности персонала N≈300.
Преимущества метода. Высокая достоверность - статистические показатели метода лучше показателей способов идентификации по лицу, голосу, росписи. Низкая стоимость устройств, сканирующих изображение отпечатка пальца. Достаточно простая процедура сканирования отпечатка.
Недостатки: папиллярный узор отпечатка пальца очень легко повреждается мелкими царапинами, порезами. Люди, использовавшие сканеры на предприятиях с численностью персонала порядка нескольких сотен человек заявляют о высокой степени отказа сканирования. Многие из сканеров неадекватно относятся к сухой коже и не пропускают стариков. При общении на последней выставке MIPS начальник службы безопасности крупного химического предприятия рассказывал что их попытка ввести сканеры пальцев на предприятии (пробовались сканеры различных систем) провалилась - минимальное воздействие химических реактивов на пальцы сотрудников вызывало сбой систем безопасности сканеров - сканеры объявляли пальцы подделкой. Так же присутствует недостаточная защищённость от подделки изображения отпечатка, отчасти вызванная широким распространением метода. Конечно, не все сканеры можно обмануть методами из Разрушителей Легенд, но всё же. Для некоторых людей с «неподходящими» пальцами (особенности температуры тела, влажности) вероятность отказа в доступе может достигать 100%. Количество таких людей варьируется от долей процентов для дорогих сканеров до десяти процентов для недорогих.
Конечно, стоит отметить, что большое количество недостатков вызвано широкой распространённостью системы, но эти недостатки имеют место быть и проявляются они очень часто.
Ситуация на рынке
На данный момент системы распознавания по отпечаткам пальцев занимают более половины биометрического рынка. Множество российских и зарубежных компаний занимаются производством систем управления доступом, основанных на методе дактилоскопической идентификации. По причине того, что это направление является одним из самых давнишних, оно получило наибольшее распространение и является на сегодняшний день самым разработанным. Сканеры отпечатков пальцев прошли действительно длинный путь к улучшению. Современные системы оснащены различными датчиками (температуры, силы нажатия и т.п.), которые повышают степень защиты от подделок. С каждым днем системы становятся все более удобными и компактными. По сути, разработчики достигли уже некоего предела в данной области, и развивать метод дальше некуда. Кроме того, большинство компаний производят готовые системы, которые оснащены всем необходимым, включая программное обеспечение. Интеграторам в этой области просто нет необходимости собирать систему самостоятельно, так как это невыгодно и займет больше времени и сил, чем купить готовую и уже недорогую при этом систему, тем более выбор будет действительно широк.
Среди зарубежных компаний, занимающихся системами распознавания по отпечаткам пальцев, можно отметить SecuGen(USB-сканеры для PC, сканеры, которые можно устанавливать на предприятия или встраивать в замки, SDK и ПО для связи системы с компьютером); Bayometric Inc. (fingerprint scanners, TAA/Access control systems, fingerprint SDKs, embedded fingerprint modules); DigitalPersona, Inc. (USB-scanners, SDK). В России в данной области работают компании: BioLink (дактилоскопические сканеры, биометрические устройства управления доступом, ПО); Сонда (дактилоскопические сканеры, биометрические устройства управления доступом, SDK); СмартЛок (дактилоскопические сканеры и модули) и др.

Радужная оболочка



Радужная оболочка глаза является уникальной характеристикой человека. Рисунок радужки формируется на восьмом месяце внутриутробного развития, окончательно стабилизируется в возрасте около двух лет и практически не изменяется в течение жизни, кроме как в результате сильных травм или резких патологий. Метод является одним из наиболее точных среди биометрических методов.
Система идентификации личности по радужной оболочке логически делится на две части: устройство захвата изображения, его первичной обработки и передачи вычислителю и вычислитель, производящий сравнение изображения с изображениями в базе данных, передающий команду о допуске исполнительному устройству.
Время первичной обработки изображения в современных системах примерно 300-500мс, скорость сравнения полученного изображения с базой имеет уровень 50000-150000 сравнений в секунду на обычном ПК. Такая скорость сравнения не накладывает ограничений на применения метода в больших организациях при использовании в системах доступа. При использовании же специализированных вычислителей и алгоритмов оптимизации поиска становится даже возможным идентифицировать человека среди жителей целой страны.
Сразу могу ответить что я несколько предвзято и положительно отношусь к этому методу, так как именно на этой ниве мы запускали свой стартап. Небольшому самопиару будет посвящён абзац в конце.
Статистические характеристики метода
Характеристики FAR и FRR для радужной оболочки глаза наилучшие в классе современных биометрических систем (за исключением, возможно, метода распознавания по сетчатке глаза). В статье приведены характеристики библиотеки распознавания радужной оболочки нашего алгоритма - EyeR SDK, которые соответствуют проверенному по тем же базам алгоритму VeriEye. Использовались базы фирмы CASIA, полученные их сканером.

Характерное значение FAR – 0.00001%.
Согласно формуле (1) N≈3000 - численность персонала организации, при которой идентификация сотрудника происходит достаточно стабильно.
Здесь стоит отметить немаловажную особенность, отличающую систему распознавания по радужной оболочке от других систем. В случае использования камеры разрешения от 1.3МП можно захватывать два глаза на одном кадре. Так как вероятности FAR и FRR являются статистически независимыми вероятностями, то при распознавании по двум глазам значение FAR будет приблизительно равняться квадрату значения FAR для одного глаза. Например, для FAR 0,001% при использовании двух глаз вероятность ложного допуска будет равна 10-8 %, при FRR всего в два раза выше, чем соответствующее значение FRR для одного глаза при FAR=0.001%.
Преимущества и недостатки метода
Преимущества метода. Статистическая надёжность алгоритма. Захват изображения радужной оболочки можно производить на расстоянии от нескольких сантиметров до нескольких метров, при этом физический контакт человека с устройством не происходит. Радужная оболочка защищена от повреждений - а значит не будет изменяться во времени. Так же, возможно использовать высокое количество методов, защищающих от подделки.
Недостатки метода. Цена системы, основанной на радужной оболочке выше цены системы, основанной на распознавании пальца или на распознавании лица. Низкая доступность готовых решений. Любой интегратор, который сегодня придёт на российский рынок и скажет «дайте мне готовую систему» - скорее всего обломается. В большинстве своём продаются дорогие системы под ключ, устанавливаемые большими компаниями, такими как Iridian или LG.
Ситуация на рынке
На данный момент удельный вес технологий идентификации по радужной оболочке глаза на мировом биометрическом рынке составляет по разным подсчетам от 6 до 9 процентов (в то время как технологии распознавания по отпечаткам пальцев занимают свыше половины рынка). Следует отметить, что с самого начала развития данного метода, его укрепление на рынке замедляла высокая стоимость оборудования и компонентов, необходимых, чтобы собрать систему идентификации. Однако по мере развития цифровых технологий, себестоимость отдельной системы стала снижаться.
Лидером по разработке ПО в данной области является компания Iridian Technologies.
Вход на рынок большому количеству производителю был ограничен технической сложностью сканеров и, как следствие, их высокой стоимостью, а так же высокой ценой ПО из-за монопольного положения Iridian на рынке. Эти факторы позволяли развиться в области распознавания радужной оболочки только крупным компаниям, скорее всего уже занимающимся производством некоторых компонентов пригодных для системы идентификации (оптика высокого разрешения, миниатюрные камеры с инфракрасной подсветкой и т.п.). Примерами таких компаний могут быть LG Electronics, Panasonic, OKI. Они заключили договор с Iridian Technologies, и в результате совместной работы появились следующие системы идентификации: Iris Access 2200, BM-ET500, OKI IrisPass. В дальнейшем возникли усовершенствованные модели систем, благодаря техническим возможностям данных компаний самостоятельно развиваться в этой области. Следует сказать, что вышеперечисленные компании разработали также собственное ПО, но в итоге в готовой системе отдают предпочтение программному обеспечению Iridian Technologies.
На Российском рынке «преобладает» продукция зарубежных компаний. Хотя и ту можно купить с трудом. Длительное время фирма Папилон уверяла всех, что у них есть распознавание по радужной оболочке. Но даже представители РосАтома - их непосредственного закупщика, для которого они делали систему рассказывают, что это не соответствует действительности. В какой-то момент проявлялась ещё какая-то российская фирма, которая сделала сканеры радужной оболочки. Сейчас уже не вспомню названия. Алгоритм они у кого-то закупили, возможно у того же VeriEye. Сам сканер представлял собой систему 10-15 летней давности, отнюдь не бесконтактную.
В последний год на мировой рынок вышло пара новых производителей в связи с истечением первичного патента на распознавание человека по глазам. Наибольшего доверия из них, на мой взгляд, заслуживает AOptix. По крайней мере их превью и документация не вызывает подозрений. Второй компанией является SRI International. Даже на первый взгляд человеку, занимавшемуся системами распознавания радужки их ролики кажутся весьма лживыми. Хотя я не удивлюсь если в реальности они что-то умеют. И та и та система не показывает данных по FAR и FRR, а так же, судя по всему, не защищена от подделок.

Распознавание по лицу

Существует множество методов распознавания по геометрии лица. Все они основаны на том, что черты лица и форма черепа каждого человека индивидуальны. Эта область биометрии многим кажется привлекательной, потому что мы узнаем друг друга в первую очередь по лицу. Данная область делится на два направления: 2-D распознавание и 3-D распознавание. У каждого из них есть достоинства и недостатки, однако многое зависит еще и от области применения и требований, предъявленных к конкретному алгоритму.
В кратце расскажу про 2-d и перейду к одному из самых интересных на сегодня методов - 3-d.
2-D распознавание лица

2-D распознавание лица - один из самых статистически неэффективных методов биометрии. Появился он довольно давно и применялся, в основном, в криминалистике, что и способствовало его развитию. В последствие появились компьютерные интерпретации метода, в результате чего он стал более надёжным, но, безусловно, уступал и с каждым годом все больше уступает другим биометрическим методам идентификации личности. В настоящее время из-за плохих статистических показателей он применяется, в мультимодальной или, как ее еще называют, перекрестной биометрии, или в социальных сетях.
Статистические характеристики метода
Для FAR и FRR использованы данные для алгоритмов VeriLook. Опять же, для современных алгоритмов он имеет весьма обыкновенные характеристики. Иногда промелькивают алгоритмы с FRR 0.1% при аналогичном FAR, но базы по которым они получены ну уж очень сомнительны (вырезанный фон, одинаковое выражение лица, одинаковые причёска, освещение).

Характерное значение FAR – 0.1%.
Из формулы (1) получаем N≈30 - численность персонала организации, при которой идентификация сотрудника происходит достаточно стабильно.
Как видно, статистические показатели метода достаточно скромные: это нивелирует то преимущество метода, что можно проводить скрытую съемку лиц в людных местах. Забавно наблюдать, как пару раз в год финансируется очередной проект по обнаружению преступников через видеокамеры, установленные в людных местах. За последние десяток лет статистические характеристики алгоритма не улучшились, а количество таких проектов - выросло. Хотя, стоит отметить, что для ведения человека в толпе через множество камер алгоритм вполне годится.
Преимущества и недостатки метода
Преимущества метода. При 2-D распознавании, в отличие от большинства биометрических методов, не требуется дорогостоящее оборудование. При соответствующем оборудовании возможность распознавания на значительных расстояниях от камеры.
Недостатки. Низкая статистическая достоверность. Предъявляются требования к освещению (например, не удается регистрировать лица входящих с улицы людей в солнечный день). Для многих алгоритмов неприемлемость каких-либо внешних помех, как, например, очки, борода, некоторые элементы прически. Обязательно фронтальное изображение лица, с весьма небольшими отклонениями. Многие алгоритмы не учитывают возможные изменения мимики лица, то есть выражение должно быть нейтральным.
3-D распознавание лица

Реализация данного метода представляет собой довольно сложную задачу. Несмотря на это в настоящее время существует множество методов по 3-D распознаванию лица. Методы невозможно сравнить друг с другом, так как они используют различные сканеры и базы. далеко не все из них выдают FAR и FRR, используются абсолютно различные подходы.
Переходным от 2-d к 3-d методом является метод, реализующий накопления информации о лицу. Этот метод имеет лучшие характеристики, чем 2d метод, но так же как и он использует всего одну камеру. При занесении субъекта в базу субъект поворачивает голову и алгоритм соединяет изображение воедино, создавая 3d шаблон. А при распознавании используется несколько кадров видеопотока. Этот метод скорее относится к экспериментальным и реализации для систем СКУД я не видел ни разу.
Наиболее классическим методом является метод проецирования шаблона. Он состоит в том, что на объект (лицо) проецируется сетка. Далее камера делает снимки со скоростью десятки кадров в секунду, и полученные изображения обрабатываются специальной программой. Луч, падающий на искривленную поверхность, изгибается - чем больше кривизна поверхности, тем сильнее изгиб луча. Изначально при этом применялся источник видимого света, подаваемого через «жалюзи». Затем видимый свет был заменен на инфракрасный, который обладает рядом преимуществ. Обычно на первом этапе обработки отбрасываются изображения, на котором лица не видно вообще или присутствуют посторонние предметы, мешающие идентификации. По полученным снимкам восстанавливается 3-D модель лица, на которой выделяются и удаляются ненужные помехи (прическа, борода, усы и очки). Затем производится анализ модели - выделяются антропометрические особенности, которые в итоге и записываются в уникальный код, заносящийся в базу данных. Время захвата и обработки изображения составляет 1-2 секунды для лучших моделей.
Так же набирает популярность метод 3-d распознавания по изображению, получаемому с нескольких камер. Примером этого может являться фирма Vocord со своим 3d сканером. Этот метод даёт точность позиционирования, согласно уверениям разработчиков, выше метода проецирования шаблона. Но, пока не увижу FAR и FRR хотя бы по их собственной базе - не поверю!!! Но его разрабатывают уже года 3, а подвижки на выставках пока не видны.
Статистические показатели метода
Полные данные о FRR и FAR для алгоритмов этого класса на сайтах производителей открыто не приведены. Но для лучших моделей фирмы Bioscript (3D EnrolCam, 3D FastPass), работающих по методу проецирования шаблона при FAR = 0.0047% FRR составляет 0.103%.
Считается, что статистическая надежность метода сравнима с надежностью метода идентификации по отпечаткам пальцев.
Преимущества и недостатки метода
Преимущества метода. Отсутствие необходимости контактировать со сканирующим устройством. Низкая чувствительность к внешним факторам, как на самом человеке (появление очков, бороды, изменение прически), так и в его окружении (освещенность, поворот головы). Высокий уровень надежности, сравнимый с метом идентификации по отпечаткам пальцев.
Недостатки метода. Дороговизна оборудования. Имеющиеся в продаже комплексы превосходили по цене даже сканеры радужной оболочки. Изменения мимики лица и помехи на лице ухудшают статистическую надежность метода. Метод еще недостаточно хорошо разработан, особенно в сравнении с давно применяющейся дактилоскопией, что затрудняет его широкое применение.
Ситуация на рынке
Распознавание по геометрии лица причисляют к «трем большим биометрикам» вместе с распознаванием по отпечаткам пальцев и радужной оболочке. Надо сказать, что данный метод довольно распространен, и ему отдают пока предпочтение перед распознаванием по радужке глаза. Удельный вес технологий распознавания по геометрии лица в общем объеме мирового биометрического рынка можно оценивать в пределах 13-18 процентов. В России к данной технологии также проявляется больший интерес, чем, например, к идентификации по радужной оболочке. Как уже упоминалось ранее, существует множество алгоритмов 3-D распознавания. В большинстве своем компании предпочитают развивать готовые системы, включающие сканеры, сервера и ПО. Однако есть и те, кто предлагает потребителю только SDK. На сегодняшний день можно отметить следующие компании, занимающиеся развитием данной технологии: Geometrix, Inc. (3D сканеры лица, ПО), Genex Technologies (3D сканеры лица, ПО) в США, Cognitec Systems GmbH (SDK, специальный вычислители, 2D камеры) в Германии, Bioscrypt (3D сканеры лица, ПО) – дочернее предприятие американской компании L-1 Identity Solutions.
В России в данном направлении работают компании Artec Group (3D сканеры лица и ПО) – компания, головной офис которой находится в Калифорнии, а разработки и производство ведутся в Москве. Также несколько российских компаний владеют технологией 2D распознавания лица – Vocord, ITV и др.
В области распознавания 2D лица основным предметом разработки является программное обеспечение, т.к. обычные камеры отлично справляются с захвата изображения лица. Решение задачи распознавания по изображению лица в какой-то степени зашло в тупик – уже на протяжении нескольких лет практически не происходит улучшения статистических показателей алгоритмов. В этой области происходит планомерная «работа над ошибками».
3D распознавание лица сейчас является куда более привлекательной областью для разработчиков. В нём трудится множество коллективов и регулярно слышно о новых открытиях. Множество работ находятся в состоянии «вот-вот и выпустим». Но пока что на рынке лишь старые предложения, за последние годы выбор не изменился.
Одним из интересных моментов, над которыми я иногда задумываюсь и на которые, возможно ответит Хабр: а точности kinect хватит для создания такой системы? Проекты по вытаскиванию 3d модели человека через него вполне себе есть.

Распознавание по венам руки


Это новая технология в сфере биометрии, широкое применение её началось всего лет 5-10 назад. Инфракрасная камера делает снимки внешней или внутренней стороны руки. Рисунок вен формируется благодаря тому, что гемоглобин крови поглощает ИК излучение. В результате, степень отражения уменьшается, и вены видны на камере в виде черных линий. Специальная программа на основе полученных данных создает цифровую свертку. Не требуется контакта человека со сканирующим устройством.
Технология сравнима по надёжности с распознаванием по радужной оболочке глаза, в чём-то превосходя её, а в чём-то уступая.
Значение FRR и FAR приведено для сканера Palm Vein. Согласно данным разработчика при FAR 0,0008% FRR составляет 0.01%. Более точный график для нескольких значений не выдаёт ни одна фирма.
Преимущества и недостатки метода
Преимущества метода. Отсутствие необходимости контактировать со сканирующим устройством. Высокая достоверность - статистические показатели метода сравнимы с показаниями радужной оболочки. Скрытость характеристики: в отличие от всех вышеприведённых - эту характеристику очень затруднительно получить от человека «на улице», например сфотографировав его фотоаппаратом.
Недостатки метода. Недопустима засветка сканера солнечными лучами и лучами галогеновых ламп. Некоторые возрастные заболевания, например артрит – сильно ухудшают FAR и FRR. Метод менее изучен в сравнении с другими статическими методами биометрии.
Ситуация на рынке
Распознавание по рисунку вен руки является довольно новой технологией, и в связи с этим ее удельный вес на мировом рынке невелик и составляет около 3%. Однако к данному методу проявляется все больший интерес. Дело в том, что, являясь довольно точным, этот метод не требует столь дорогого оборудования, как, например, методы распознавания по геометрии лица или радужной оболочке. Сейчас многие компании ведут разработки в данной сфере. Так, например, по заказу английской компании TDSi было разработано ПО для биометрического считывателя вен ладони PalmVein, представленного компанией Fujitsu. Сам сканер был разработан компанией Fujitsu в первую очередь для борьбы с финансовыми махинациями в Японии.
Также в сфере идентификации по рисунку вен работают следующие компании Veid Pte. Ltd. (scanner, software), Hitachi VeinID (scanners)
В России компаний, занимающихся данной технологией, мне не известно.

Сетчатка глаза


До недавнего времени считалось, что самый надёжный метод биометрической идентификации и аутентификации личности - это метод, основанный на сканировании сетчатки глаза. Он содержит в себе лучшие черты идентификации по радужной оболочке и по венам руки. Сканер считывает рисунок капилляров на поверхности сетчатки глаза. Сетчатка имеет неподвижную структуру, неизменную по времени, кроме как в результате болезни, например, катаракты.
Сканирование сетчатки происходит с использованием инфракрасного света низкой интенсивности, направленного через зрачок к кровеносным сосудам на задней стенке глаза. Сканеры сетчатки глаза получили широкое распространение в системах контроля доступа на особо секретные объекты, так как у них один из самых низких процентов отказа в доступе зарегистрированных пользователей и практически не бывает ошибочного разрешения доступа.
К сожалению, целый ряд трудностей возникает при использовании этого метода биометрии. Сканером тут является весьма сложная оптическая система, а человек должен значительное время не двигаться, пока система наводится, что вызывает неприятные ощущения.
По данным компании EyeDentify для сканера ICAM2001 при FAR=0,001% значение FRR составляет 0,4%.
Преимущества и недостатки метода
Преимущества. Высокий уровень статистической надёжности. Из-за низкой распространенности систем мала вероятность разработки способа их «обмана».
Недостатки. Сложная при использовании система с высоким временем обработки. Высокая стоимость системы. Отсутствие широкого рынка предложение и как следствие недостаточная интенсивность развития метода.

Геометрия рук


Этот метод, достаточно распространённы ещё лет 10 назад и произошедший из криминалистики в последние годы идёт на убыль. Он основан на получении геометрических характеристик рук: длин пальцев, ширины ладони и.т.д. Этот метод, как и сетчатка глаза - умирающий, а так как у него куда более низкие характеристики, то даже не будем вводить его боле полного описания.
Иногда считается что в системах распознавания по венам применяют геометрические методы распознавания. Но в продаже мы такого явно заявленного ни разу не видели. Да и к тому же часто при распознавании по венам делается снимок только ладони, тогда как при распознавании по геометрии делается снимок пальцев.

Немного самопиара

В своё время мы разработали неплохой алгоритм распознавания по глазам. Но на тот момент такая высокотехнологичная штука в этой стране была не нужна, а в буржуйстан (куда нас пригласили после первой же статьи) - ехать не хотелось. Но внезапно, спустя года полтора таки нашлись инвесторы, которые захотели построить себе «биометрический портал» - систему, которая бы кушала 2 глаза и использовала цветовую составляющую радужной оболочки (на что у инвестора был мировой патент). Собственно теперь мы этим и занимаемся. Но это не статья про самопиар, это краткое лирическое отступление. Если кому интересно есть немного инфы, а когда-нибудь в будущем, когда мы выйдем на рынок (или не выйдем) я тут напишу пару слов о перипетиях биометрического проекта в России.

Выводы

Даже в классе статических систем биометрии имеется большой выбор систем. Какую из них выбрать? Всё зависит от требований к системе безопасности. Самыми статистически надежными и устойчивыми к подделке системами доступа являются системы допуска по радужной оболочке и по венам рук. На первые из них существует более широкий рынок предложений. Но и это не предел. Системы биометрической идентификации можно комбинировать, достигая астрономических точностей. Самыми дешёвыми и простыми в использовании, но обладающими хорошей статистикой, являются системы допуска по пальцам. Допуск по 2D лицу удобен и дёшев, но имеет ограниченную область применений из-за плохих статистических показателей.
Рассмотрим характеристики, которые будет иметь каждая из систем: устойчивость к подделке, устойчивость к окружающей среде, простота использования, стоимость, скорость, стабильность биометрического признака во времени. Расставим оценки от 1 до 10 в каждой графе. Чем ближе оценка к 10, тем лучше система в этом отношении. Принципы выбора оценок были описаны в самом начале статьи.


Также рассмотрим соотношение FAR и FRR для этих систем. Это соотношение определяет эффективность системы и широту её использования.


Стоит помнить, что для радужной оболочки можно увеличить точность системы практически квадратично, без потерь для времени, если усложнить систему, сделав её на два глаза. Для дактилоскопического метода - путём комбинирования нескольких пальцев, и распознаванию по венам, путём комбинирования двух рук, но такое улучшение возможно только при увеличении времени, затрачиваемого при работе с человеком.
Обобщив результаты для методов, можно сказать, что для средних и больших объектов, а так же для объектов с максимальным требованием в безопасности следует использовать радужную оболочку в качестве биометрического доступа и, возможно, распознавание по венам рук. Для объектов с количеством персонала до нескольких сотен человек оптимальным будет доступ по отпечаткам пальцев. Системы распознавания по 2D изображению лица весьма специфические. Они могут потребоваться в случаях, когда распознавание требует отсутствия физического контакта, но поставить систему контроля по радужной оболочке невозможно. Например, при необходимости идентификации человека без его участия, скрытой камерой, или камерой наружного обнаружения, но возможно это лишь при малом количестве субъектов в базе и небольшом потоке людей, снимаемых камерой.

Юному технику на заметку

У некоторых производителей, например у Neurotechnology на сайте доступны демо-версии методов биометрии, которые они выпускают, так что вполне можно подключить их и поиграться. Для тех же, кто решит покопаться в проблеме посерьёзнее, могу посоветовать единственную книжку которую я видел на русском - «Руководство по биометрии» Р.М. Болл, Дж.Х. Коннел, Ш. Панканти. Там есть много алгоритмов и их математических моделей. Не всё полно и не всё соответствует современности, но база неплохая и объемлющая.

P.S.

В этом опусе я не вдавался в проблему аутентификации, а только затрагивал идентификацию. В принципе из характеристики FAR/FRR и возможности подделки все выводы по вопросу аутентификации напрашиваются сами.

Теги:

  • биометрия
  • сканеры отпечатков пальцев
Добавить метки

Биометрические системы аутентификации - системы аутентификации , использующие для удостоверения личности людей их биометрические данные.

Биометрическая аутентификация - процесс доказательства и проверки подлинности заявленного пользователем имени, через предъявление пользователем своего биометрического образа и путём преобразования этого образа в соответствии с заранее определенным протоколом аутентификации .

Не следует путать данные системы с системами биометрической идентификации , каковыми являются к примеру системы распознавания лиц водителей и биометрические средства учёта рабочего времени . Биометрические системы аутентификации работают в активном, а не пассивном режиме и почти всегда подразумевают авторизацию . Хотя данные системы не идентичны системам авторизации, они часто используются совместно (например, в дверных замках с проверкой отпечатка пальца).

Энциклопедичный YouTube

    1 / 4

    Биометрическая аутентификация в службе каталогов Active Directory

    ЦРТ-Инновации. Биометрические системы идентификации

    Биометрическая аутентификация Windows Hello

    # РЕЖИМ ГЛОБАЛИЗАЦИИ # БИОМЕТРИЧЕСКАЯ СИСТЕМА #

    Субтитры

Методы аутентификации

Различные системы контролируемого обеспечения доступа можно разделить на три группы в соответствии с тем, что человек собирается предъявлять системе:

1) Парольная защита. Пользователь предъявляет секретные данные (например, PIN-код или пароль).

1. Всеобщность: Данный признак должен присутствовать у всех людей без исключения.

2. Уникальность : Биометрия отрицает существование двух людей с одинаковыми физическими и поведенческими параметрами.

3. Постоянство: для корректной аутентификации необходимо постоянство во времени.

4. Измеряемость: специалисты должны иметь возможность измерить признак каким-либо устройством для дальнейшего занесения в базу данных.

5. Приемлемость: общество не должно быть против сбора и измерения биометрического параметра.

Статические методы

Аутентификация по отпечатку пальца

Идентификация по отпечаткам пальцев - самая распространенная биометрическая технология аутентификации пользователей. Метод использует уникальность рисунка папиллярных узоров на пальцах людей. Отпечаток , полученный с помощью сканера, преобразовывается в цифровой код , а затем сравнивается с ранее введенными наборами эталонов. Преимущества использования аутентификации по отпечаткам пальцев - легкость в использовании, удобство и надежность. Универсальность этой технологии позволяет применять её в любых сферах и для решения любых и самых разнообразных задач, где необходима достоверная и достаточно точная идентификация пользователей.

Для получения сведений об отпечатках пальцев применяются специальные сканеры. Чтобы получить отчётливое электронное представление отпечатков пальцев, используют достаточно специфические методы, так как отпечаток пальца слишком мал, и очень трудно получить хорошо различимые папиллярные узоры.

Обычно применяются три основных типа сканеров отпечатков пальцев: ёмкостные, прокатные, оптические. Самые распространенные и широко используемые это оптические сканеры, но они имеют один серьёзный недостаток. Оптические сканеры неустойчивы к муляжам и мертвым пальцам, а это значит, что они не столь эффективны, как другие типы сканеров. Так же в некоторых источниках сканеры отпечатков пальцев делят на 3 класса по их физическим принципам: оптические, кремниевые, ультразвуковые [ ] [ ] .

Аутентификация по радужной оболочке глаза

Данная технология биометрической аутентификации личности использует уникальность признаков и особенностей радужной оболочки человеческого глаза. Радужная оболочка - тонкая подвижная диафрагма глаза у позвоночных с отверстием (зрачком) в центре; расположена за роговицей , между передней и задней камерами глаза, перед хрусталиком . Радужная оболочка образовывается ещё до рождения человека, и не меняется на протяжении всей жизни. Радужная оболочка по текстуре напоминает сеть с большим количеством окружающих кругов и рисунков, которые могут быть измерены компьютером, рисунок радужки очень сложен, это позволяет отобрать порядка 200 точек, с помощью которых обеспечивается высокая степень надежности аутентификации. Для сравнения, лучшие системы идентификации по отпечаткам пальцев используют 60-70 точек.

Технология распознавания радужной оболочки глаза была разработана для того, чтобы свести на нет навязчивость сканирования сетчатки глаза, при котором используются инфракрасные лучи или яркий свет. Ученые также провели ряд исследований, которые показали, что сетчатка глаза человека может меняться со временем, в то время как радужная оболочка глаза остается неизменной. И самое главное, что невозможно найти два абсолютно идентичных рисунка радужной оболочки глаза, даже у близнецов. Для получения индивидуальной записи о радужной оболочке глаза черно-белая камера делает 30 записей в секунду. Еле различимый свет освещает радужную оболочку, и это позволяет видеокамере сфокусироваться на радужке. Одна из записей затем оцифровывается и сохраняется в базе данных зарегистрированных пользователей. Вся процедура занимает несколько секунд, и она может быть полностью компьютеризирована при помощи голосовых указаний и автофокусировки. Камера может быть установлена на расстоянии от 10 см до 1 метра, в зависимости от сканирующего оборудования. Термин «сканирование» может быть обманчивым, так как в процессе получения изображения проходит не сканирование, а простое фотографирование. Затем полученное изображение радужки преобразуется в упрощенную форму, записывается и хранится для последующего сравнения. Очки и контактные линзы, даже цветные, не воздействуют на качество аутентификации . [ ] [ ] .

Стоимость всегда была самым большим сдерживающим моментом перед внедрением технологии, но сейчас системы идентификации по радужной оболочке становятся более доступными для различных компаний. Сторонники технологии заявляют о том, что распознавание радужной оболочки глаза очень скоро станет общепринятой технологией идентификации в различных областях.

Аутентификация по сетчатке глаза

Аутентификация по геометрии руки

В этом биометрическом методе для аутентификации личности используется форма кисти руки. Из-за того, что отдельные параметры формы руки не являются уникальными, приходится использовать несколько характеристик. Сканируются такие параметры руки, как изгибы пальцев, их длина и толщина, ширина и толщина тыльной стороны руки , расстояние между суставами и структура кости. Также геометрия руки включает в себя мелкие детали (например, морщины на коже). Хотя структура суставов и костей являются относительно постоянными признаками, но распухание тканей или ушибы руки могут исказить исходную структуру. Проблема технологии: даже без учёта возможности ампутации, заболевание под названием «артрит » может сильно помешать применению сканеров.

С помощью сканера, который состоит из камеры и подсвечивающих диодов (при сканировании кисти руки, диоды включаются по очереди, это позволяет получить различные проекции руки), затем строится трёхмерный образ кисти руки. Надежность аутентификации по геометрии руки сравнима с аутентификацией по отпечатку пальца.

Системы аутентификации по геометрии руки широко распространены, что является доказательством их удобства для пользователей. Использование этого параметра привлекательно по ряду причин. Процедура получения образца достаточно проста и не предъявляет высоких требований к изображению. Размер полученного шаблона очень мал, несколько байт. На процесс аутентификации не влияют ни температура , ни влажность , ни загрязнённость. Подсчеты, производимые при сравнении с эталоном, очень просты и могут быть легко автоматизированы .

Системы аутентификации, основанные на геометрии руки, начали использоваться в мире в начале 70-х годов . [ ] [ ]

Аутентификация по геометрии лица

Биометрическая аутентификация человека по геометрии лица довольно распространенный способ идентификации и аутентификации . Техническая реализация представляет собой сложную математическую задачу. Обширное использование мультимедийных технологий , с помощью которых можно увидеть достаточное количество видеокамер на вокзалах, аэропортах, площадях, улицах, дорогах и других местах скопления людей, стало решающим в развитии этого направления. Для построения трёхмерной модели человеческого лица, выделяют контуры глаз, бровей, губ, носа, и других различных элементов лица, затем вычисляют расстояние между ними, и с помощью него строят трёхмерную модель. Для определения уникального шаблона, соответствующего определенному человеку, требуется от 12 до 40 характерных элементов. Шаблон должен учитывать множество вариаций изображения на случаи поворота лица, наклона, изменения освещённости, изменения выражения. Диапазон таких вариантов варьируется в зависимости от целей применения данного способа (для идентификации, аутентификации, удаленного поиска на больших территориях и т. д.). Некоторые алгоритмы позволяют компенсировать наличие у человека очков, шляпы, усов и бороды . [ ] [ ]

Аутентификация по термограмме лица

Способ основан на исследованиях, которые показали, что термограмма лица уникальна для каждого человека. Термограмма получается с помощью камер инфракрасного диапазона . В отличие от аутентификации по геометрии лица, данный метод различает близнецов. Использование специальных масок, проведение пластических операций, старение организма человека, температура тела, охлаждение кожи лица в морозную погоду не влияют на точность термограммы. Из-за невысокого качества аутентификации, метод на данный момент не имеет широкого распространения .

Динамические методы

Аутентификация по голосу

Биометрический метод аутентификации по голосу , характеризуется простотой в применении. Данному методу не требуется дорогостоящая аппаратура, достаточно микрофона и звуковой платы . В настоящее время данная технология быстро развивается, так как этот метод аутентификации широко используется в современных бизнес-центрах. Существует довольно много способов построения шаблона по голосу. Обычно, это разные комбинации частотных и статистических характеристик голоса. Могут рассматриваться такие параметры, как модуляция , интонация , высота тона, и т. п.

Основным и определяющим недостатком метода аутентификации по голосу - низкая точность метода. Например, человека с простудой система может не опознать. Важную проблему составляет многообразие проявлений голоса одного человека: голос способен изменяться в зависимости от состояния здоровья, возраста, настроения и т. д. Это многообразие представляет серьёзные трудности при выделении отличительных свойств голоса человека. Кроме того, учёт шумовой компоненты является ещё одной важной и не решенной проблемой в практическом использовании аутентификации по голосу. Так как вероятность ошибок второго рода при использовании данного метода велика (порядка одного процента), аутентификация по голосу применяется для управления доступом в помещениях среднего уровня безопасности, такие как компьютерные классы, лаборатории производственных компаний и т. д.

Поддержите проект — поделитесь ссылкой, спасибо!
Читайте также
Как переназначить клавиши на клавиатуре: пошаговая инструкция Как переназначить клавиши на клавиатуре: пошаговая инструкция Повышение приоритета в Диспетчере задач операционной системы Windows Как установить приоритет процесса Повышение приоритета в Диспетчере задач операционной системы Windows Как установить приоритет процесса Биометрические системы безопасности и системы аутентификации Биометрические системы безопасности и системы аутентификации